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Abshah A family of generalized Fibonacci lattices, which are locally isomorphic and exhibit 
a peculiar type of self-similarity, have been found to exist by shifting the position of the svip 
(initial phase) in lhe projection method. The necessay and sufficient conditions of generating 
such selfsimilar quasiperiodic lattices are established. The power-law growth behaviour of the 
wavefunction at E = 0 in the~off-diagonal model defined on some of these lattices has been 
analysed. It is shown that, although various s w c t m s  resulting from different initial phases are 
in a local isomorphism class, they lead to a variety of maximum exponents of power for the 
scaling of the wavefunction. 

1. Introduction 

The experimental discovery of the quasicrystal phase~in metallic alloys [l], together with 
the realization of a quasiperiodic (QF) superlattice 121, has generated considerable interest in 
studying one-dimensional (ID) QP systems. In particular, much attention has been devoted 
to the systems with QP potentials based on the Fibonacci sequence, which provides a kind 
of prototype model for studying QP systems (see, e.g., [3] and references therein). Starting 
from the Fibonacci sequence, many generalizations have been proposed [4], mainly by 
generalizing the substitution rule that is characteristic for the QP Fibonacci sequence. The 
advantage of the generalization along this line lies in the fact that the resultant systems 
possess self-simiIarity so that one can exploit the renormalization-group (RG) technique 
introduced by Kohmoto, Kadanoff and Tang (KKT) [SI to work out many physical properties 
as well as the scaling of the electronic wavefunction and energy spectrum. However, not 
all the substitution rules generate sequences with both self-similarity and quasiperiodicity. 
The condition under which the substitution rule will generate a sequence that possesses 
quasiperiodicity has been discussed by many authors (see [3] and references therein). 
Another direction of generalizing the Fibonacci sequence. which has received less attention, 
is to keep the quasiperiodicity by using the standard projection method [6], or, equivalently, 
through the following algebraic technique: 

where w is a positive irrational number and is supposed to be less than 1 without loss of 
generality, k is an integer, and 0, is the initial phase, denoting the shift in position of the 
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854 Zhifang Lin et a1 

strip in the projection method [7]. Obviously, equation (1) generates binary QP sequences 
composed of Is and Os. When w = w~ = (& - 1)/2, the inverse of the golden mean, 
and 0, = 0, starting with k = 1, equation (1) produces the ordinary semi-infinite Fibonacci 
sequence. The sequences made by (1) are QP, hut they are not all self-similar, i.e. some 
of them cannot be constructed with a certain substitution rule so that KKTs RG approach 
[5] seems to be inapplicable. So, an analogous question is that under what condition the 
sequence made by ( I )  will be self-similar. For the case with 00 = 0 it has been shown [8] 
that when and only when w is a quadratic irrational number? can a sequence made by (1) 
be self-similar. 

Now a natural question is whether the self-similarity of the sequence is preserved when 
the initial phase 00 # 0. In this paper, we consider the shifted precious mean (PM) sequences, 
namely the QP sequences made by (1) with non-vanishing 00 and w being a PM number [9, IO] 

- [ n , n , n  ,... ] n = l , 2 , 3 .  ... . (2) 
I 

1 

n f - ~  

0, = 

1 

n + " .  

n f  

It is shown that the necessary and sufficient conditions for a shifted PM sequence to be 
self-similar is that 00 has the form 

I + @ "  P 
(3) 

where N ,  M and p are integers. The shifted PM sequences with 00 given by (3) exhibit a 
particular type of self-similarity, so that all of them form a natural family of generalized 
Fibonacci sequences. 

The study of the initial phase 0, and its effect on the structural property of the 
QP sequence seems to be trivial, as the sequences with vanishing and non-vanishing 00 
are locally isomorphic so that one may argue that there is no difference in physical 
characteristics, in spite of the different types of self-similarity. This, however, turns out to he 
incorrect. To illustrate some examples that different structures due to variant initial phases 
may have different physical features, we study the scaling behaviour of the wavefunction 
at E = 0 for an off-diagonal tight-binding model defined on some different sequences. It 
is shown that the different structures arising from various initial phases, although locally 
isomorphic, may cause the variety of the maximum exponents of power for the power-law 
growth of the wavefunction. The initial phase is therefore physically meaningful. With 
the same logic, one may expect that for more general ID, two-dimensional (ZD) and three- 
dimensional (3D) quasicrystals, a variety of swctures appear as well, due to the different 
initial phases (the initial phase for higher-dimensional quasicrystals is the shift in position of 
the hyperprism in the projection method). In addition, some variant physical characteristics 
may result from these different structures, even when such different structures themselves 
are locally isomorphic among each other. 

The rest of the paper is organized as follows. In section 2 the necessary and sufficient 
conditions for a shifted PM sequence to be self-similar are established. In section 3, we 
study the scaling behaviour for the amplitude of the wavefunction at E = 0 for an off- 
diagonal tight-binding model defined on some different sequences. The maximum exponent 
of power for the power-law growth of the wavefunction are calculated analytically. It is 
shown that various structures obtained from different initial phases may cause the variety 

1 N + M u ,  eo = - 

t A qundrntic imtiond number is n red number which is the solution to 3 quadratic algebraic equation with 
integer coefficients. 
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of the physical characteristics, although the structures themselves are locally isomorphic. 
Finally, concluding remarks are made in section 4. 

2. Self-similarity 

In this section, we shall show that the necessary and sufficient condition for a shifted PM 
sequence to be self-similar is that 00 has the form (3). 

Before going on, some preliminaries are recalled first. For a binary QP sequence S 
made by (1) with arbitrary w and So, the following self-similarity transformation (deflation 
operation) ( D ,  - T): 

(D.-T) 1 = 1"O 
(D,-T) 0 = 1 

n = 1,2,3, .  . . (4) 

with 1" standing for the concatenation of n Is, corresponds to a transformation on the values 
of w and 80 by 

That is to say, the sequence S(I) = (D,, - T ) S  can be made by (1) with w(I )  and e:". When 
w = w, and 0, = 0, it follows from 

that the sequence S generated by (1) is invariant under arbitrary times of , deflation operations 
(D,, - T). This is the case for the ordinary PM sequences [9,10]. 

Now we turn to the shifted PM sequence, i.e. the case with w = w, but 6, # 0. For 
such a case, in order that the sequence S be self-similar, one must expect that S is invariant 
under a finite 1 times self-similarity transformation ( D ,  - T). Other types of~transformation 
(substitution) are not appropriate, because they will change the value of w (see equation (5)) 
and thus modify the ratio of the number of Is to that of Os, leading to a different sequence. 
As a result, if a shifted PM sequence S preserves self-similarity, one must have 

S'" (D.-T)' S = S (7) 
where I is a finite integer. By noticing that 

I' 

w f )  = m , w , J  = U ,  1'= 1,2,3, ... (8) 

it is not difficult to observe that a shifted PM sequence S is self-similar if and only if there 
exist a finite integer I such that the following relation is satisfied 

where the K is an integer, denoting a finite shift in the index k of the sequence. Taking 
into account the relation 

(10) 

(11) 

(-U")' = Ai-I -  AI 

AI+I = n A l +  AI-I ( 1  > 1) with Ao = 0 and A I  = 1 

one easily comes to the conclusion that the necessary condition for a shifted PM sequence to 
be self-similar is that eo can be expressed in the form (3). Thus, it is a rather trivial statement 

where AI's obey the following recursion relation: 
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that the initial phase of a self-similar shifted PM sequence must be of the form (3). Taking 
the contraposition, one concludes that the shifted PM sequence with any other So does not 
have any self-similarity, in the sense that we cannot find any self-similarity transformation 
that makes the sequence invariant. In the following, we shall show that the converse is also 
true, i.e. the shifted PM sequence with 6'0 of the form (3) has self-similarity. 

When So can be cast into form (3), equation (9) reads 

where i, is an integer. By using (IO), the above equation reduces to 

  AI+^ - l)M - AIN = i x p  
(AI-1 - l )N - AIM = (ix + K ) p .  (13) 

In other words, if one can find a finite I that satisfies (13), then the sequence S will be 
invariant under I times deflation operations, (Dn - T)'S = S. On the other hand, by paying 
attention to (111, it is easy to observe that (13) is fulfilled whenever there exists a finite 
1 such that AI-I - 1 and A I  are both multiples of the integer p .  Therefore, the problem 
of proving that the condition (3) is sufficient for a'shifted PM sequence to be self-similar 
reduces to the problem of finding a finite I which makes both AI-I - 1 and AI multiples 
of p. In the following we present the proof for the existence of such an 1. 

Let us consider the case with positive p,  while the case with negative p can be discussed 
in an analogous way. As p = 1 is a trivial case, in the following we assume p > 1. Define 
two sets of integers, ( x l ]  and (y~]. by 

with O < x ~ < p - l  
(14) 

xi = A, (mod p )  
y1 AI-1 - 1 (mod p )  with - 1 < yl < p - 2 .  

It follows from the definitions that the existence of a finite 1 that makes ( X I ,  y ~ )  = (0,O) 
equivalent to the existence of a finite I such that both Ai-, - 1 and AI are multiples of p. 
while the latter guarantees that the shifted PM sequence S is self-similar in the sense of 

With the use of (ll), it is straightforward to derive the recursion relation for XI and y ~ :  
(D, - T)'S =~s. ~. 

XI+] = nx1-t YI  + 1 (mod p )  YI+I = XI - 1 . (15) 
From the initial conditions Ao = 0 and A, = 1, it follows that 

XI = 1 y ,  = - I .  (16) 
So in order to prove the existence of self-similarity, one has to show that starting 
with (XI, y ~ )  = (1, -I), one can get (XI, y ~ )  = (O,O), for finite I ,  by the recursion 
transformation (15). To this end, let us first notice two characteristics of the transformation 
(15). The first one is that (15) is a one-to-one transformation, i.e. no two different pairs 
of (x, y ) .  say (x1-], y l -] )  and for example, can be transformed to the same 
( x I ,  y ~ )  by (15). The second characteristic for the transformation (15) lies in the fact that 
starting with any initial conditions, as one carries out the transformation (15) further and 
further, either a finite cycle or a fixed point will be found in the (x, y )  space, because 
the region for the allowed values of x,  and y I  is finite (see equation (14)). Note also that 
neither the cycle nor the fixed point can contain any dangling tail because of the one-to-one 
characteristic of transformation (15). Now let us start with (x. y) = (0,O). By a single time 
of transformation (15), we are led to the point ( x ,  y) = (1, -1) in the (x. y )  space. Vice 
versa, if one starts with (x, y) = (1, -I), then he will definitely get to (0,O) within a finite 
number of transformations (15). because of the above-mentioned two characteristics of the 

(1) (1) (2) (2) 
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Table 1. The S-sequences for some both-infinite shifted PM sequences associated with the initial 
phase &I lhat can be expressed in the form (3). The quantity m is a positive integer. The 
bnckei '( )' in the S-sequence denotes the unit of cycle, whereas ihe symbol '1' sepemles iwo 
semi-infinite sequences extending to lhe dght and io the left. The cycle length Ls for the S- 
sequence and the cycle length LM for the corresponding transfer m h i x  (periodic M-series) are 
also listed. The maximum exponents of power p for the power-law scaling of the wavefunction 
at E = 0 are pmented in the last  column,^ with Pf' given by (41) and (51). for even and odd n, 
respectively. 

n &I S-sequence Ls Lu P 

2 O+ ...~~s3s2~~s2sl,s:s" I sI(sIsl)(s2~Il(. .: I 2 p;I" 
... )(S3)(SZ)(Sl)Sl I (so)(sl)(s2)(. .. I 2 ~ z p p  

2 -7 I . . .)(SSS~SSSSSSS,S~S~)SI I (SIS~SZSISRS~&S~)(.  . . 8 8 . 2pf' 
2 I I . . .)(szslsIso) I Sl(S3SzS4S3)(. . . 4 4 p p  

2 m + 2  o+ . . .)~s;-'s*)(s;-~sl)s;si, I sl~s;-'sl,~~s;-'sl~~.~. 1 2 p(y+Z' 
2 m + 2  -+ . . .)(s;-2szsl)s;-1 I (s,,s;-2sl)(. . . 2 2 2P(y+21 

I 
-2 2 

3 O+ ...)(s:s2)(s:sl)s:s" I sl~s~so~~s;sl~~... 1 6 Pf' 
3 -5 I ...~~s4s3szs;sl~slsl I ~slsils:sls2)(. .. 3 . 6  ;pi3' 
3 - 3  I . . .)(s4s4s3~(s2szsI)sI I (sls~lsI)(s3szs3)(. . . 2 6 #If1 

Z m + l  O+ .. .)~s;-'s~)(s;-'sl)s;sil I s l ~ s ~ - ~ s l ~ ~ ~ ~ - ~ s l ~ ~ .  . . 1 6 fly1' 
4 m + 3  -6 . . . ) ( S ~ S S ~ S ~ ' S ~ ~ ~ S I ) S ~ ~ + ~  l 1 (S:m+2So)(SptzS3)( ... 3 ~ 6 ~ 2 P Y 3 )  

4 m i - 1  -$ . . . ) ( S ~ m S 3 S ~ - ' S , ~ ~ S ~ ) S ~ + 1  I (S~siiS,~SiS:--'S2)(... ~ 3 -6 ~ 2 P Y 0  

transformation. This, in fact, implies that there exists a finite I such that boa - 1 and 
AI are multiples of p. From the above discussion, one easily sees that the same arguments 
are also valid for a negative p. This ends our proof for the sufficient condition. 

Therefore, it is finally concluded that the necessary and sufficient condition for a shifted 
PM sequence to be self-similar is that 00 can be,expressed in the form (3). 

To see the specific self-similarity directly, we have decomposed the infinite-shifted PM 
sequence into a so-called S-sequence 171, which is composed of a finite-order PM sequence 
SI defined by the inflation scheme 19,101 

SI+[ = SYSL-, (1 > 1)  with SO = 0 and SI = 1 (17) 
where S; denotes the concatenation of n SI'S. The decomposition rules are described in 
appendix. Table 1 shows the S-sequences for some infinite-shifted PM sequences associated 
with 00 of the form (3). In the table. the symbol 'I' separates two semi-infinite sequences 
st&ing from k = 1 up to positive infinity and starting from k = 0 down to minus infinity 
(see equation (I)). The bracket I( )' in the S-sequence denotes the unit of cycle and helps 
to show the self-similarity of the sequence, i.e. the sequence is invariant under Ls times of 
deflation operations (4). For example, for the case with n = 2 and 00 = $, the S-sequence 
will be 

. . ~ ) ( ~ 1 0 ~ 9 ~ 9 ~ 8 ) ( ~ 6 ~ 5 ~ S ~ 4 ) ~ ~ Z ~ l  SI SO)lSl(~3~Z~4~3)(~7~6~8~7)(~1 I SlOslZSl I )(. . , . (18) 
While in the table, only the central part 

. . .~~S2sIsIso~lsl~S3s2s4s3~~. , . (19) 
is shown, because the side parts are simply the Ls = 4 times deflation of the adjacent unit 
of cycle, e.g. 

(20) 
(S6SSSSs4) = (&-T)4(S2sIs,SO) 
(S7 s6 s8 S7) = ( 9 - T ) 4  (S3 s2S4 S3) 
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where we have made use of (4 - T) 'S /  = S/+. Notice that the same value of Ls appears 
naturally on both sides. In addition, one can easily derive 

( D z - T ) ~ S I  = Ss = (SZSISISO)S~(S~~S~S). (21) 

The entire sequence is therefore self-similar in the sense that it coincides with itself by a 
finite Ls ordinary deflation operations (4). In fact, the quantity LS is the least integer 1 
which makes ( D ,  - T)'S = S, In the rest of this paper, Ls will be called the cycle length 
for the S-sequence. 

From table 1, it can be seen that the self-similarity is preserved whenever 6'0 can be cast 
into form (3), whereas different 6'0 may give rise to various types of self-similarity (see, the 
different values of LS'S in table 1). 

3. Scaling of the wavefunction 

In the last section, it has been shown that the shifted PM sequences with various initial phases 
may have different types of self-similarity (see, the different values of L,?'s in table 1). These 
different structures are, in fact, locally isomorphic [ I l l .  As a result, one may ask whether 
there is any difference in physical characteristics among these shuctures. Figure 1 shows 
the numerical results of the absolute square of the wavefunction I@(k)l* as a function of 
the site index k,  at E = 0 in four finite off-diagonal model systems with vanishing and 
non-vanishing 6'0. It is clearly seen that the case with 00 # 0 has a different feature from 
that of the case with 6'0 = 0. In this section, the maximum exponents of power for the 
power-law scaling of the wavefunction at E = 0 of some model systems are calculated 
analytically, via a straightforward extension of the method of [lo, 121, to confirm these 
different features. 

The model is described by the off-diagonal tight-binding Hamiltonian 
m 

H Etk+I(lk)(k f 11 + I k +  l ) ( k l )  (22) 
k=O 

where { l k ) )  denote an orthonormalized set of bases characterized by the lattice sites ( k ) .  
The transfer energy tk is taken to be r, (th) if fk is 1 (0) according to (1). The homogeneous 
equation 

(23) (H - E)"(E) = 0 

for a given energy E can be reconstructed by using the transfer matrix T as follows 

where @ ( k )  denotes the value of the wavefunction " ( E )  at site k and the transfer matrix 
T(k + 1, k )  is given by 

In order to take advantage of the deflation symmetry (self-similarity) of the lattice, it is 
natural to choose the following two basic transfer matrices: 

B = T(t, ,  fa) A = T(tu, th )T( th ,  ta)Bn-' (26) 
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I I 
- 7.5 - Ink 7.5 0 Ink --c 0 

-2olnR 
7.5 - Ink 7.5 0 - Ink 0 

Figure 1. The In-In plot of the absolute square I$(k)lz of the wavefunction at E = 0 in the 
off-diagonal model (ZZ), ns a function of the site index k up to k = 1800, for the’cases with 
(a) n = 2, 91, = 0, (&) n = 2, So = -4, (c) n = 3. 01, = 0, and (d)  the c a e  with n = 3, 
8) = -(on +5)/IS. The m s f a  energies have been chosen ns tb/& = R, and the bounday 
condition [$(Oh $(I)] = (Lei$. 

so that the transfer matrix MI for the ordinary finite PM lattice St of I generation can be 
obtained from the recurring relation 

MI+I = MI-IM; (27) 

together with the initial conditions MI = B and Mz = A. The two basic transfer matrices 
A and B connect basic blocks a, _= 1”O and bl 1 in the QP lattice. To be specific, 
through the product of the matrices A’s and B’s, one can only calculate the. values of the 
wavefunction at the right end sites of the basic blocks a, and bl, but not those at arbitrary 
lattice sites. However, as the sizes of blocks a1 and bl are finite, the scaling behaviour of 
the wavefunction can be well determined by its values at the right end sites of such blocks. 
Therefore, in the rest of this section, we focus our attention on.the analysis of the values 
of wavefunction at such right end sites. This enables us to deal solely with the product of 
the transfer matrices A’s and B’s. 

At E = 0, the centre of the entire energy spectrum for the off-diagonal model, the two 
basic transfer matrices become 
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with 

A * = ( - :  -1/R ) il) 
and R = tb/t,. The simplicity of the form of the two basic matrices allows us to discuss the 
scaling behaviour of the wavefunction, analytically, for any shifted PM lattice that preserves 
the deflation symmetry. 

Before discussing the scaling of the wavefunction, let us first explore some 
characteristics of the transfer matrix. As is shown in the appendix, the semi-infinite shifted 
PM sequence associated with any initial phase 00 can be decomposed into an S-sequence 

Sl:;ISl,S;:,lS!~S~+lSl, .. . . (30) 
with ni 2 0 and li 2 0 being integers, so the transfer matrix for the corresponding semi- 
infinite lattice can be written as 

. . . M i , M ~ + l M i ~ M ~ + l M i ~ M ~ ~ l .  (31) 
When the S-sequence has the cyclic structure with cycle length Ls (as was shown in 
table 1) and the transfer matrix MI is of l,+,-cycle, with Mr+!M = Mi, the transfer matrix for 
the semi-infinite-shifted PM lattice will take the form of the following periodic M-series: 

, . . M!,M?,,][M!/M?+, . . . M!,M;+,][M!,M?+l . . . M,,MF+J ( 1  < li, < 00) (32) 

plus an additional term M,$4;:+, . . . IW~,M:+~ at the right end. The additional term can be 
removed by a suitablefnite shift of the initial point of the sequence and thus has no effect 
on the scaling of the wavefunction. The periodic M-series (32) coincides with itself by LM 
times of the ordinary deflation operations, (D, - T)'M, plus an insertion of the unit of cycle 
[M,,M?+, . . . Mi,M?+,] X into the starting point (right end). The quantity LM is called 
the cycle length for the M-series. It is the least common multiple of the cycle lengh IM 
for the transfer matrix MI and the cycle length Ls for the S-sequence. 

Now we shall focus our discussion on some examples. 
(i) n is even and 0, = 0. 

In this case, the semi-infinite PM sequence can be decomposed as 

S,,=o = S, = sl(s;-'So)(S,"-'Sl)(sr;-'S2,(S~-' . . . 

A = (-1)("-2)/2A'B* 5=5*. 

(33) 
with Ls = 1. The two basic transfer~matrices read 

The transfer matrix Ml is of two-cycle with  MI+^ = &MI so that LM = 2. After removing 
the finite initial part SI (S;'So) from (33), the transfer matrix for the remainder of the semi- 
infinite lattice, 

(S,-~Sl)(S;-'S2)(S,-'s,)(S;-'S,)(S,.-' . . . 134) 

. . .I€MZM;-'MIM,"-~l[MzM;-~MIM,"-'l. (35) 

has the form of periodic M-series 

Here and in the rest of this section, we drop the sign of the transfer matrix for simplicity, 
since we are interested in the absolute value of the wavefunction. The value of the 
wavefunction at the right end site of the Jth basic block on lattice (34) can be written 
as 
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where k ,  labels the right end site of the J t h  basic block, and k, i s  the product of J basic 
transfer matrices A's and B's. By noticing that A' = 5' = -1, it is possible to write k, 
as 

A2, = g(q, r )  = B ~ ( A B ) '  q = O , 1  r =  ..., -2,-1,0,1,2 ,... (37) 
where we have once again neglected the change of sign for simplicity. If one considers 
open boundary conditions with @(O) = 1 and @(I) = s4, then the absolute value of 
wavefunction at the right end site of the Jth basic block on lattice (34) is given by 

with the sign before r dependent on the value of q. 
Consider any two neighbouring basic blocks, J and J + 1, on lattice (34). The matrices 

2, and k,+, determine the wavefunction at the right end sites of blocks J and J + 1, 
respectively, where MJ+I is either Bg(q. r )  or Ag(q, r ) .  Making LM = 2 times of ordinary 
deflation operations (4), we have- 

(39) 

The emergence of the matrix X, which is.the pansfer matrix for (Si-'Sl)(S:-'Sz), is due 
to a~shift of starting site by (S;-'S1)(S$-'S2) between sequence (34) and the one~after 
LM = 2 deflation operations 

(40) 
After LM deflation operations, the position of the block J changes to J'. and (J + 1) 
to (J + 1)'. The wavefunction at the right end site of block J' is determined by 
kJr = g(q, r )X ,  while that at the right end site of block ( J  + 1)' determined by either 
~ < J + I ) ,  = BA"&, r)X = B g ( q ,  r)X or &+I), = A(BA")"g(q, r)X = M q ,  r )X ,  
depending on block ( J  + 1) being either bl or al. Because blocks J' and (J + I)' are now 
no longer neighbours, some new values of the wavefunction will appear between blocks J' 
and (J + I)'. Paying attention to (38) and using the analysis method presented in [IO, 121, 
one can easily come to the conclusion that the wavefunction at E = 0 grows at most by a 
power law, @ ( k )  - kp, with the maximum exponent of power given by 

B g ( q ,  7 )  + BAn&, r ) x  
A&, r )  + . A(BA")"g(q, r ) X .  

(S,"-'s3)(S;-'s4)(ssn-'s5)(s;-'S6)(Ss"-' . . . . 

In deriving (41), use has been made of the fact that 

x = M2M;-' MI Mi-' = 1 (42) 

and LM deflation operations, (D, - T ) ' M ,  rescales the length of the lattice by (I,",)'". 

In this case, the shifted PM sequence should be 
(ii) n is even and 00 = -(n - l ) /n .  

s@,=-(n-l)/n = (s0s,"-'sI)(s2s~-2S3)(sqSgn-2s5)(s6 ._ . 

(s,"-2s, SZ) (s;-2s3s4) ( S,-2s5s6) (sy;-2 . . . 

(43) 
with Ls = 2. After removing the initial part SO, the transfer matrix for the remainder 

- (4 
reads . 

. . .][MzM1M~-2][M2M1M~-2]. . (45) 
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With a similar discussion to case (i), it is easy to find that the important difference is that 

X M2Ml Mim2 = AB (46) 

in place of (42). So the maximum exponent of power for the scaling of the wavefunction 
can be found to be 

(iii) n is odd and 00 = 0. 
In this case, the semi-infinite PM sequence can be decomposed as (33). However, the two 
basic transfer matrices reduce to 

A = (-l)(n-')/'A* B = B " ,  

The transfer matrix M! is of six-cycle, M/+6 = M!, so that LM = 6. The transfer matrix 
for the semi-infinite lattice (34) is given by 

. . . ] [M6M;-' M5M;-IM4M;-I M3 Mln-'M2M;-' MI Mi-'] 
x [Ms M;-'MSM:-IM~M;-' M~MT-'M~M;-'MI Mi-'] . 

The relations (AB)' = B' = -1 imply that &J can be cast in the form 

(48) 

6, = g(q, r )  = B ~ A ~  q=O, l  r =  ..., -2,-1,0,1,2 ,..._ (49) 

X = M~M;-'M~M,"-'M~M;-'M~M~-'M'M~-'MIM~-' = 1 .  

After making LM = 6 ordinary deflation operations, (& - T ) 6 ,  we have a similar but more 
complicated relation as (39), with 

(50) 
A discussion analogous to the former cases yields 

(iv) n is odd and 00 = -4. 
In this case, the semi-infinite shifted PM sequence is decomposed as 

S@,=-i = (s~sos~sls;l-'s*)(s,ms3s~s~s~-'s,)(s~s,. . . (52) 
with m = (n - l)/2 > 0 and L s  = 3. The significant difference from case (iii) is that, in 
place of (50). X becomes 

x = M ~ M ~ M ~ M ~ - ' M ~ M ~ M ~ M ~ M ~ M ~ - ] M , M ~  (53) 
which suggests 

A"+' for even m 

for odd m . *"-I 

It follows straightforwardly from a similar analysis that 

(54) 

Some other examples, for which variant maximum exponents of power for the power-law 
growth of the wavefunction are obtained due to different initial phases, are shown in table 1. 
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4. Conclusions 

Binary QP sequences made by (1) with OJ = U,, and non-vanishing initial phase 00, or, 
more visually, the binary QP sequences generaed by the standard projection method [6] 
associated with tanp = 0. and a shift in the position of the strip by 00 [7], have been 
shown to preserve self-similarity if and only if 00 can be cast into the form (3). Different 
types of self-similarity have been found to exist depending on the value of 00. Despite the 
difference in self-similarity, these QP sequences are locally isomorphic. As a consquence, 
one may believe that they will not produce any difference in physical characteristics. This, 
in fact, turns out to be incorrect, as has been found by studying the scaling behaviour of 
the wavefunction at E = 0 in  ai^ off-diagonal model. Our analytical results have shown 
that, depending on the value of 00, there exist various maximum exponents of power for the 
power-law scaling behaviour of the wavefunction. The variety of the power-law exponent 
for the wavefunction suggests that different types of system-size dependence of the resistance 
may exist. 

The variety of the self-similar QP structures in a local isomorphism class and the variety 
of physical characteristics caused does not seem to be specific only to the generalized 
Fibonacci QP lattices. A similar feature can also be expected in more general ID, 2D and 3D 
quasicrystals. 
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Appendix. 

In this appendix, we describe how to decompose an infinite 'shifted PM sequence into an 
S-sequence, consisting of ordinary PM sequences of finite order, SI, defined by the inflation 
scheme (17). 

Let us first concentrate on the right semi-infinite sequence starting from k = 1 up to 
positive infinity in {l). When 00 = 0, the semi-infinite sequence is simply the limit of SI as 
1 + +cc made by the inflation scheme (17). When 00 is small but finite, the new sequence 
will be identical to the ordinary PM sequence S, only up to some finite k .  If the initial part 
of the new sequence matches Sgl SI ( I  > 0, n' =, 0 , l . .  . . , n - 1) for its entire length, then 
it is said that the corresponding 00 generates SI. It is notbifficult to note that, whenever 
SFllS, is generated, SElSl and &, with n" < n', are also~generated. As a result, for 
each value of 00 there must be a maximum value I ,  of 1 and a maximum value n., of n' 
for-which S;,"lS~m is generated but St:;:", with a positive integer, is not generated. We 
shall say that~Sz+,,Sl, is guaranteed by the initial phase. In other words, the guaranteed 
sequence is the longest generated sequence. For any 00, that is located inside the interval 
[-]/A, wn/A) ,  with A = 1 + w,, the guaranteed finite sequence can be worked out as 

t"+l < 0 o c - -  t m  SYSO for - - 
A 

m = 0, 1, . . . , n - 1 
A 

m = 0. 1, . . . , n - I 



864 ZhGang Lin et a1 

and 

m = 1, ..., n - I  j > 1 643) 
( - % P $ m  ~ @, < - ( - o n ) Z ~ $ m + l  < 

A A 
S$+ISzj for - 

m = l ,  ..., n - 1  j > l  (A4) 
where $,,, = I-mo,. For the purpose of sequence decomposition, it is not always convenient 
to associate the longest generated sequence (the guaranteed sequence) Sz+lSlm to e,. In 
fact, the idea of the sequence decomposition is'that, after selecting a generated sequence, 
say S:il SI,, for example, as an element in the S-sequence for certain e,, one must treat 
k = nlPl,+1 + PI, + 1 as the new starting point k' =-1, so that one can get a new initial 
phase and determine the next element in the S-sequence. Here PI is the number of digits 
in the lth-order PM sequence SI, defined by the following recursion relation: 

PI+, = n S  + PI-, (1 > 1) with PO = PI = 1. (-45) 
To be more specific, after selecting StiISl, as the first element in the S-sequence, the 
remainder of the shifted PM sequence should be regarded as a new shifted PM sequence with 
the new initial phase 0; given by 

where 

for x - LxJ < oJA x - LxJ 
x - Lxl - 1 for x - LxJ @"/A 

with LxJ denoting the integer part of x .  Note that by using the function F(x ) ,  e; is once 
again located inside the interval [ - l /A,  oJA). In order to ensure that the element of 
the type S/kl SI appears in increasing order of I in the S-sequence (which will be of central 
importance in discussing the self-similarity of the infinite sequence), the element in the 
S-sequence should be chosen carefully to make the new initial phase 0; satisfy le;[ < p o l .  
For n, # 0, selecting the guaranteed sequence as an element in the S-sequence does leave 
us with a smaller le& On the other hand, for n,  = 0 and I ,  3, as in (AZ), one must 
choose a shorter generated sequence &"-I, instead of selecting the guaranteed sequence Slm, 
as an element in the S-sequence in order to guarantee IS;/ c I&/. With this rule in mind, 
the element in the S-sequence is determined according to the following rules: 

(A7) I F(x)  = 
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and the new initial phase can be worked out as 

(--O,)Zj+l tm (-w.)2'+lcm+1 < e (-W,)V+ I c m  
K O < -  ~A A 

m = 0 , 1 ,  ..., n - 1  j > O .  

for 0 < - 
A e;, = eo + 

It is easy to see that 

(-Wn)Zj+2 ( - w d * j + l t m + ,  < @, < - (-W")2j+l<m 

A A 
- <e ;<o  for o < -  

m =0, 1, .. ., n - 1 
A 

j > 0 (AI 1) 
so the new initial phase'@;, is less than lSol in absolute value and will guarantee an element 
of the type Sf;lSl in the S-sequence with increasing order of I from the left to the right. 

We are now ready to show how to decompose a shifted PM sequence with any eo located 
inside the interval (-l/A < 00 < on/A) into an S-sequence. If 60 = 0, then the complete 
PM sequence follows, so that the decomposition ends up with the sole member S, in the 
S-sequence. If 00 # 0, on the other hand, we may register T+l S,, as the first element in 
the S-sequence provided that 00 lies between -(-m,#le /A and -(-mn)'ltn,+1/A. At the 
same time, we treat k = nl PI,+, +fi ,  + 1 as the new starting point k' = 1 and the new initial 
phase @A is determined by (A10). If e;, = 0, then S, is registered as the second and the 
last element in the S-sequence, and the decomposition is completed. If 0; # 0, on ,[he other 
hand, we have to determine the second element from the value of e;, by (AS) and (A9). Then 
the new initial phase @; is calculated by (AIO). From Q:, we can obtain the third element in 
the S-sequence. This process is repeated infinitely until we find a vanishing initial phase. At 
each ste , the element of the type Sr'lSl is determined by (AS) and (A9), and the new initial 

determines the decomposition of any shifted PM sequence into an S-sequence. At each step 
of the decomposition, the relation between the new initial phase O F i )  and the previous one 
0;" guarantees that the elements of the type SCl SI appear in increasing order of 1 from the 
left to the right, with the increment of 1 between any two adjacent elements being always 
odd. Furthermore, from (AI I )  we know that S, never follows S/ilSl of an odd index 1.  
In fact, if these properties are to be required of the S-sequence, the decomposition will be 
unique. 

As for the left semi-infinite sequence stating from k = 0 down to minus infinity made 
by ( I ) ,  with some decomposition rules similar to (A9) and (AlO), one can also decompose 
it into a succession of finite PM sequences. However, for the sequence extending to the 
left, we choose to ensure that the element of the type S;;lS~ appears in the S-sequence in 
increasing order of 1 from the right to the left, rather than from the left to the right. This 
makes it convenient for us to observe the self-similarity of the shifted PM sequence with e, 
of the form (3), as was discussed in section 2 and shown in table 1. 

"! 

phase eo'"'' P is found from the previous one @$"' through ( N O ) .  The procedure uniquely 
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