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Abstract. A family of generalized Fibonacci lattices, which are locally isomorphic and exhibit
a peculiar type of self-similarity, have been found to exist by shifting the position of the strip
(initial phase} in the projection method. The necessary and sufficient conditions of generating
such self-similar quasiperiodic lattices are established, The power-faw growth behaviour of the
wavefunction at £ = ( in the off-diagonal model defined on some of these lattices has been
analysed. It is shown that, although various structures resulting from different initial phases are
in a local isomorphism class, they lead to a variety of maximum exponents of power for the
scaling of the wavefunction.

1. Introduction

The experimental discovery of the quasicrystal phase in metallic alloys [1], together with
the realization of a guasiperiadic (QP) superlattice [2], has generated considerable interest in
studying one-dimensional (ID) QP systems. In particular, much attention has been devoted
to the systems with QP potentials based on the Fibonacci sequence, which provides a kind
of prototype mode] for studying QP systems (see, e.g., [3] and references therein), Starting
from the Fibonacci sequence, many generalizations have been proposed [4], mainly by
generalizing the substitution rule that is characteristic for the QP Fibonacct sequence. The
advantage of the generalization along this line lies in the fact that the resultant systems
possess self-similarity so that one can exploit the renortalization-group (RG) technique
introduced by Kohmoto, Kadanoff and Tang (KKT) [5] to wérk out many physical properties
as well as the scaling of the electronic wavefunction and energy spectrum. However, not
all the substitution rules generate sequences with both self-similarity and quasiperiodicity.
The condition under which the substitution rule will generate a sequence that possesses
guasiperiodicity has been discussed by many authors (see [3] and references therein).
Another direction of generalizing the Fibonacci sequence, which has received less attention,
is to keep the quasiperiodicity by using the standard projection method [6], or, equivalently,
through the following algebraic technique:

k+1, k
=—+Hh|—-|—+8& 1
i [1+m+°J L1+w+°J M
where w is a positive irrational number and is supposed to be less than I without loss of
generality, k is an integer, and #; is the initial phase, denoting the shift in position of the
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strip in the projection method [7]. Obviously, equation (1} generates binary QP sequences
composed of 1s and 0s. When @ = @, = (v/5 — 1)/2, the inverse of the golden mean,
and 6y = 0, starting with £ = 1, equation (1) produces the ordinary semi-infinite Fibonacci
sequence. The sequences made by (1) are P, bnt they are not ali self-similar, i.e. some
of them cannot be constructed with a certain substitution rule so that KKTs RG approach
[5] seemns to be inapplicable. So, an analogous question is that under what condition the
sequence made by (1) will be self-similar. For the case with 8y = 0 it has been shown [3]
that when and only when @ is a quadratic irrational number} can a sequence made by (1)
be seif-similar.

Now a natural question is whether the self-similarity of the sequence is preserved when
the initial phase 6y 7= 0. In this paper, we consider the shifted precious mean (PM) sequences,
namely the QP sequences made by (1) with non-vanishing 8 and & being a PM number [9, 10]

W, = : =[n,nn,...] n=1,2,3.... (2)

"+ i

n+

n+ .
It is shown that the necessary and sufficient conditions for a shifted PM sequence to be
self-similar is that &y has the form
=- I N+Mo, 3)

+ @, P
where N, M and p are integers. The shifted PM sequences with 8, given by (3) exhibit a
particular type of self-similarity, so that all of them form a natural family of generalized
Fibonacci sequences. .

The study of the initial phase 8 and its effect on the structural property of the
QP sequence seems to be trivial, as the sequences with vanishing and non-vanishing &,
are lecally isomorphic so that one may argue that there is no difference in physical
characteristics, in spite of the different types of self-similarity. This, however, turns out to be
incorrect. To illustrate some examples that different structures due to variant initial phases
may have different physical features, we study the scaling behaviour of the wavefunction
at E = ( for an off-diagonal tight-binding model defined on some different sequences. It
is shown that the different structures arising from various initial phases, although localiy
isomorphic, may cause the variety of the maximum exponents of power for the power-law
growth of the wavefunction. The initial phase is therefore physically meaningful. With
the same logic, one may expect that for more general LD, two-dimensional (2D) and three-
dimensional (3D) quasicrystals, a variety of structures appear as well, due to the different
initial phases (the initial phase for higher-dimensional quasicrystals is the shift in position of
the hyperprism in the projection method). In addition, some variant physical characteristics
may result from these different structures, even when such different structures themselves
are locally isomorphic among each other.

The rest of the paper is organized as follows. In section 2 the necessary and sufficient
conditions for a shifted PM sequence to be self-similar are established. In section 3, we
study the scaling behaviour for the amplitude of the wavefunction at £ = 0 for an off-
diagonal tight-binding model defined on some different sequences. The maximum exponent
of power for the power-law growth of the wavefunction are calcnlated analytically. It is
shown that various structures obtained from different initial phases may cause the variety

&

T A quadratic jrrational number is a real number which is the solution to a quadratic algebraic equation with
integer coefficients.
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of the physical characteristics, although the structures themselves are locally isomorphic.
Finally, concluding remarks are made in section 4.

2. Self-similarity

In this section, we shall show that the necessary and sufficient condition for a shifted pM
sequence to be self-similar is that 4 has the form (3).

Before going on, some preliminaries are recalled first. For a binary QP sequence S
made by (1} with arbitrary w and &, the following self-similarity transformation (deflation
operation) (D, — T):

(D,-T)y1=1"0

(D,-T)Y0=1
with 1” standing for the concatenation of 7 1s, corresponds to a transformation on the values
of w and 6 by

n=1273,.. . {4)

o = 1
r4w )
That is to say, the sequence S = (D, — T)S can be made by (1) with © and 6", When
w = w, and 8y = 0, it follows from
1
R -ty ©
that the sequence § generated by (1) is invariant under arbitrary times of deflation operations
(D, — T). This is the case for the ordinary PM sequences [9,10].

Now we turn to the shifted PM sequence, i.e. the case with @ = w, but 6 % 0 For
such a case, in order that the sequence § be self-similar, one must expect that S is invariant
under a finite { times self-similarity transformation (D, —T). Other types of transformation
(substitution) are not appropriate, because they will change the value of w (see equation (5))
and thus modify the ratio of the number of Is to that of 0s, leading to a different sequence.
As a result, if a shifted PM sequence § preserves self-similarity, one must have

SO = (D, ~-TYS=5 (7)
where [ is a finite integer. By noticing that
!r
" = (7, .. 1, 0] = w, I'=1,2,3,... (8)

it is not difficuit to observe that a shifted PM sequence § is self-similar if and only if there
exist a finite integer [ such that the following relation is satisfied:

Gél) = —w‘”@o . (5)

g =

80('” = (—wn)i 90 = 80 -+ (mﬂd 1) . g (9)

1+,
where the K is an integer, denoting a finite shlft in the index k of the sequence. Taking
into account the relation

(—wa) = A — @0p A, . (10}
where 4,’s obey the following recursion relation:
‘ A1 = nA + Aol ({21 withAg=0 and 4; =1 (11)

one easily comes to the conclusion that the necessary condition for a shifted PM sequence to
be self-similar is that &y can be expressed in the form (3). Thus, it is a rather trivial statement
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that the initial phase of a self-similar shifted PM sequence must be of the form (3). Taking
the contraposition, one concludes that the shifted PM sequence with any other 6, does not
have any self-similarity, in the sense that we cannot find any self-similarity transformation
that makes the sequence invariant. In the following, we shall show that the converse is also
true, i.e. the shifted PM sequence with 6 of the form (3) has self-similarity.

When 6 can be cast into form (3), equation (9) reads

1 N+ Mo 1 N+Mo K
ol n no_
(@) X 5= T+wn  p =TT (12)

where i, is an integer. By using (10), the above equation reduces to
(Apg — DM — AIN =i p
(A1 —DN -4 M = (i, +K)p.

In other words, if one can find a finite { that satisfies (13}, then the sequence S will be
invariant under / times deflation operations, (D, — T)'S = S. On the other hand, by paying
attention to (11), it is easy to observe that (13) is fulfilled whenever there exists a finite
! such that A;_; — 1 and A, are both multiples of the integer p. Therefore, the problem
of proving that the condition (3) is sufficient for a shifted PM sequence to be self-similar
reduces to the problem of finding a finite ! which makes both 4;,_; — 1 and A; multiples
of p. In the following we present the proof for the existence of such an /.

Let us consider the case with positive p, while the case with negative p can be discussed
in an analogous way. As p = 1 is a trivial case, in the following we assume p > 1. Define
two sets of integers, {x;} and {3}, by _

x; = A; {mod p) with 0 p—1
v = A — 1 (mod p) with -1y gp—2.
It follows from the definitions that the existence of a finite ! that makes (xy, )} = (0, 0)

(13)

(14)

equivalent to the existence of a finite { such that both 4;_, — 1 and A; are multiples of p,
while the latter guarantees that the shifted PM sequence S is self-similar in the sense of
(D, - T)S =.8.

With the use of (11), it is straightforward to dcnve the recursion relation for x; and y:
X1 = nx 4+ ¥+ 1 (mod p) Vst =x—1. (15)

From the initial conditions Ap = 0 and A; = 1, it follows that
=1 yo=—I. (16)

So in order to prove the existence of self-similarity, one has to show that starting
with {x;, y1) = (1,—1), one can get (x;, ) = (0,0), for finite [, by the recursion
transformation (15). To this end, let us first notice two characteristics of the transformation
(15). The first one is that (15) is a one-to-one transformation, i.e, no two different pairs
of (x,y), say (x[(_l_}l, y(l)) and (x(_z,)l, yf_z_)) for example, can be transformed to the same
(%1, 1} by (15). The second characteristic for the transformation (15) lies in the fact that
starting with any initial conditions, as one carries out the transformation (15} further and
further, either a finite cycle or a fixed point will be found in the (x,y) space, because
the region for the allowed values of x; and y; is finite (see equation (14)). Note also that
neither the cycle nor the fixed point can contain any dangling tail because of the one-to-one
characteristic of transformation (13). Now let us start with (x, ¥} = (0, 0). By a single time
of transformation (15), we are led to the point (x, y} = (1, —1) in the (x, ) space. Vice
versa, if one starts with (x, y) = (1, —1), then he will definitely get to (0, 0) within a finite
number of transformations (15), because of the above-mentioned two characteristics of the
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Table 1. The S-sequences for some both-infinite shifted pM sequences associated with the initiaf
phase & that can be expressed in the form (3). The guantity m is a positive infeger. The
bracket ‘( J in the S-sequence denotes the unit of cycle, whereas the symbol ‘> seperates two
semni-infinite sequences extending to the right and to the left. The cycle length Ly for the S-
sequence and the cycle length Ly for the corresponding transfer matrix (petiodic M-series) are
also listed. The maximum exponents of power 8 for the power-law scaling of the wavefunction
at £ = are presented in the last column, with ﬁ({,"J given by (41) and (51), for even and odd n,

respectively.
n [N S-sequence Ls Ly B
2 o+ < HS 825285380 | SIS 1oz g
2 -1 - HSSHSDSODSE | (S (S8 o2 28%
2 -1 .. HS351565655555455)51 | (51505251 52835:57)(... 8 8 . 3g”
2 i - HE2S15150) | 51(52828483)(. .. 4 & pg?
3 ot - HS}S2)($28183 50 | S1(SESNSFS:)(. .. 16 g
3 -4 . MS:535253505151 | (S150535152)(... 36 3R
3 -1 - (8586 52)(S25251)81 | (S150S1M(S38285)(. - 2 6 A
2m+2 of e ESET S (528181 | SUESE T Sy (SE SO 12 gemtd
2m 42 —o=l S STESSDSI | (SoSiTEs0C . 2 2 2R
Zm+1 oF SIS (ST S8 S | SISt Sy (sE SN . 1 6 {ml)
am+3 —arla L SPSSITH S SR S | (SIS SET RSN 3 -6 28
dm+l -1 NS S S sy sim s 8P L (s sims SIS 3 6 - 2!

transformation. This, in fact, implies that there exists a finite [ such that both A;—; — 1 and
A; are multiples of p. From the above discussion, one easily sees that the same arguments
are also valid for a negative p. This ends our proof for the sufficient condition.

Therefore, it is finally concluded that the necessary and sufficient condition for a shifted
PM sequence to be self-similar is that &y can be expressed in the form (3).

To see the specific self-similarity directly, we have decomposed the infinite-shifted PM
sequence into a so-called S-sequence [7], which is composed of a finite-order PM sequence .
§; defined by the inflation scheme [9, 10]

Sier = SFS1y @>1) with S=0 and $; =1 )

where S} denotes the concatenation of n §;’s. The decomposition rules are described in
appendix, Table 1 shows the S-sequences for some infinite-shifted PM sequences associated
with 6y of thé form (3). In the table, the symbol ‘|” separates two semi-infinite sequences
starting from k = 1 up to positive infinity and starting from £ = 0 down to minus infinity
" (see equation (1}). The bracket *( )’ in the §-sequence denotes the unit of cycle and helps
to show the self-similarity of the sequence, l.e. the sequence is invariant under Lg times of
defiation operations (4). For example, for the case with n =2 and 6 = 41, the S-sequence
will be ’

- (8105955 55 (S6.55.5554) (52,5151 50) |51 (S3528283) (857 8653 57)(S11 510812511} . . (18)

While in the table, only the central part .
- 2528151503151 (52 F2.Sa. 533 . i e (19

. is shown, because the side parts are simply the Lg = 4 times deflation of the adjacent unit
of cycle, e.g. )
(SsSs55554) = (Da—T)* (8528151 5)

(57565557) = (Da—TY*(S5525453) 20)
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where we have made use of (D, — T)‘S;" = Sf_;_i. Notice that the same value of Lg appears
naturally on both sides. In addition, one can easily derive :

(Dy=T)*S| = 85 = (525151 50) S1(53.525453) . (21)

The entire sequence is therefore self-similar in the sense that it coincides with itself by a
finite Lg ordinary deflation operations (4). In fact, the quantity Lg is the least integer |
which makes (D, — T)'S = S. In the rest of this paper, Ls will be called the cycle length
for the S-sequence.

From table 1, it can be seen that the self-similarity is preserved whenever 8 can be cast
into form (3), whereas different 6y may give rise to various types of self-similarity (see, the
different values of Lg’s in table 1).

3. Scaling of the wavefunction

In the last section, it has been shown that the shifted PM sequences with various initial phases
may have different types of self-similarity (see, the different values of L,’s in table 1). These
different structures are, in fact, locally isomorphic [11]. As a result, one may ask whether
there is any difference in physical characteristics among these structures. Figure 1 shows
the numerical results of the absolute square of the wavefunction |y (k)| as a function of
the site index k, at £ = O in four finite off-diagonal model systems with vanishing and
non-vanishing 9. It is clearly seen that the case with 8 3¢ 0 has a different feature from
that of the case with 8y = 0. In this section, the maximum exponents of power for the
power-law scaling of the wavefunction at E = 0 of some model systems are calculated
analytically, via a straightforward extension of the method of [10, 12], to confirm these
different features. .
The model is described by the off-diagonal tight-binding Hamiltonian

H= tep(k)(k+ 1+ [k + k) (22)
k=0 )

where {|k)} denote an orthonormalized set of bases characterized by the lattice sites {k}.
The transfer energy ¢ is taken to be &, (1) if fi is 1 (D) according to (1). The homogeneous
equation

(H — EYW(EY=0 (23)

for a given energy £ can be reconstructed by using the transfer matrix T as follows

v (k) 20

where ¥ (%) denotes the value of the wavefunction W(E) af site k and the transfer matrix
T(k+1,k) is given by

[ vk +1) :|=M(k)[ vl } M =T+ 1LBTGE—1). T2, 1) (24

T(k + 1* k) = T(fk+1, fk) = ( E/ik'*'l _tkérk'Fl ) (k = 1, 2, 3, . .) 3 (25)

In order to take advantage of the deflation symmetry (self-similarity) of the lattice, it is
natural to choose the following two basic transfer matrices:

B =Tt 1) A =Tty tp)T (th, ta) B (26)
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Figure 1. The In-In plot of the absolute square |4 (k)|® of the wavefunction at £ = 0 in the
off-diagonal model (22), as a function of the site index & up to & = 1800, for the ‘cases with
@rn=28=0Fn=248=-1()n=3 6 =0, and (d) the case with n = 3,
By = —{wy + 5)/18. The trapsfer energies have been chosen as #,/2; = R, and the boundary
condition [4(0}, ¥(1)] = (L, &),

so that the transfer matrix M; for the ordinary finite PM lattice S; of ! generation can be
obtained from the recurring relation

My = M M} 27y

together with the initial conditions M, = B and M, = A. The two basic transfer matrices
A and B connect basic blocks a; = 1"0 and b; = | in the gp lattice. To be specific,
through the product of the matrices A’s and B’s, one can only calculate the values of the
wavefunction at the right end sites of the basic blocks a; and b, but not those at arbitrary
lattice sites. However, as the sizes of blocks a; and b, are finite, the scaling behaviour of
the wavefunction can be well determined by its values at the right end sites of such blocks.
Therefore, in the rest of this section, we focus our attention on the analysis of the values
of wavefunction at such right end sites. This enables us to deal solely with the product of
the transfer matrices A's and B’s. )

At B =0, the centre of the entire energy spectrum for the off-diagonal model, the two
basic transfer matrices become

A= A*(B*)n-—-! B =B (28)
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® _R 0 * __ 0 —1
A*(o —I/R) B—(1 0) (29

and R = 1/t,. The simplicity of the form of the two basic matrices allows us to discuss the
scaling behaviour of the wavefunction, analytically, for any shifted PM lattice that preserves
the deflation symmetry.

Before discussing the scaling of the wavefunction, let us first explore some
characteristics of the transfer matrix. As is shown in the appendix, the semi-infinite shifted
PM sequence associated with any initial phase 8y can be decomposed into an S-sequence

S{:I-H Sh SZZ-H St ng-l-[ Sp--- . (30

with 7; 2 0 and I; > O being integers, so the transfer matrix for the corresponding semi-
infinite lattice can be written as

...M;aM{;ﬂ_lM;QM,’;Z_,_IMg,ME‘_,_I . (31)
When the S-sequence has the cyclic structure with cycle length L {(as was shown in

table 1) and the transfer matrix M; is of [yr-cycle, with Miy,,, = M, the transfer matrix for
the semi-infinite-shifted FM lattice will take the form of the following periodic M -series:

coo My MMy M My My M M ] (1<, I <o) (32)

with

plus an additional term M; M7, ... My, M}, at the right end. The additional term can be
removed by a suitable finite shift of the initial point of the sequence and thus has no effect
on the scaling of the wavefunction. The periodic M-series (32) coincides with itself by Ly
times of the ordinary deflation operations, (D, — T)*, plus an insertion of the unit of cycle
(M, M;{H . My M',] = X into the starting point (right end). The quantity Ly is calied
the cycle length for the M-series. It is the least common multiple of the cycle length [,
for the transfer matrix M; and the cycle length Lg for the S-sequence.

Now we shall focus our discussion on some examples.

(i) n is even and 63 = 0.
In this case, the semi-infinite PM sequence can be decomposed as

Say=0 = Seo = S1(S7 7 S0)(S; ™SS5 S)(S; . (33)
with L¢ = 1. The two basic transfer matrices read
A=(—1)r"P24*B*  B=1p".

The transfer matrix M; is of two-cycle with M;.» = £M, so that L,y = 2. After removing
the finite initial part §)(5¢So) from (33), the transfer matrix for the remainder of the semi-
infinite lattice,

(S5 SIS5 T S2) (S5 S (ST sase! (34
has the form of periodic M-series
MMM MMM M M) (35)

Here and in the rest of this section, we drop the sign of the transfer matrix for simplicity,
since we are interested in the absolute value of the wavefunction. The value of the
wavefunction at the right end site of the Jth basic block on lattice (34) can be written

as
V=D T v 1 o [ 9
[ Viks) ]—M(k"’)[W(O)}_M’{W(O)] (36)
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where k; labels the right end site of the Jth basic block, and M is the product of J basic
transfer matrices A’s and B’s. By noticing that A2 = B% = —1, it is possible to write M
as

M;=g(g,r) = BY(AB) g=0,1 r=...,-2,-1,0,1,2,... NS

where we have once again neglected the change of sign for simplicity. If one considers
open boundary conditions with ¢¥(0) = [ and ¥(l) = ¢'®, then the absolute value of
quefunction at the right end site of the Jth basic block on lattice (34) is given by

W+ ] _{ IR
[ )| ]‘(|m*) 9
with the sign before r dependent on the value of 4.

Consider any two neighbouring basic blocks, J and J -+ 1, on lattice (34). The matrices
My and M 741 determine the wavefunction at the right end sites of blocks J and J + 1,
respectively, where M s+t 18 either Bg(g.r) or Ag(g, r). Making L = 2 times of ordinary
- deflation operations (4), we have

Bglg.r) — BA"g(g,r)X (39)
Aglg,ry — A(BA™)'g(q,r)X.

The emergence of the matrix X, which is'the transfer matrix for (SQ‘IS;)(Sg_ISz), is due
to a’shift of starting site by (S57'8,)(557'S,) between sequence (34) and the one after
Ly = 2 defiation operations .

(38X ST SIS U0

After Ly deflation operations, the position of the block J changes to J', and (/ 4+ 1)
to (J + 1y. The wavefunction at the right end site of block J' is determined by
M s = g(g, )X, while that at the right end site of block {J + 1Y determined by either
M(;.;.])-' = BA"g(g,r)X = Bgl(g,r)X or M(].Hy A(BA™'g2(q, X = Ag(qg,r)X,
depending on block (J + 1} being either &; or a;. Because blocks J and (J + 1)’ are now
no longer neighbours, some new values of the wavefunction will appear between blocks J'
and (J + 1¥. Paying attention to (38) and using the analysis method presented in [10, 12],
one can easily come to the conclusion that the wavefunction at £ = 0 grows at most by a
power law, (k) ~ k#, with the maximum exponent of power given by

IniR|
)  _ ( )
5e:=o =B o lnw, for even n . ' (41)
In deriving (41), use has been made of the fact that
X=MMZT' MMy = (42)
and L, deflation operations, (D, — T)"M rescales the length of the lattice by (I fw,)%.
(inisevenand 8y = —(n — 1)/n.
In this case, the shifted PM sequence shouid be
Say=—tn—ty/n = (S0S3 7281} (52877255) (Sa 52 7255) (S ... . (43)
with Lg = 2. After removing the initial part Sy, the transfer matrix for the remainder
(S5728152) (S728286) (ST 2858} (372 .. (44)

reads

T e 17T (45)
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With a similar discussion to case (i), it is easy to find that the important difference is that
X = MoM M™% = AB (46)

in place of (42). So the maximum exponent of power for the scaling of the wavefunction
can be found to be

2R _ o

{
ﬂﬂ:i—(n—l)/n = ha, o for even n. (47)

(iit) » s odd and 6 = Q.
In this case, the semi-infinite PM sequence can be decomposed as (33). However, the two
basic transfer matrices reduce to

A = (=1)e-D24* B=B"

The transfer matrix M) is of six-cycle, My = M), so that Ly = 6. The transfer matrix
for the semi-infinite lattice (34) is given by

[ MedME MM~ MM MMy~ Mo MG My MG
x| MMy~ MsME™ MaML ™ MMy~ Mo My~ MMy (48)
The relations (AB)? = B? = —1 imply that M, can be cast in the form
M;=g(g,r)=BIA g=0,1 r=..,=-2,-1,0,12,.... (49)

After making Ly = 6 ordinary deflation operations, (D, — T)®, we have a similar but more
complicated relation as (39), with

X = MeMy~ MsMZ™ MM MsMY I MoMET MOM = 1. (50)
A discussion analogous to the former cases yields

B = (n) _(n41)In|Rj

. 1
Sa=0 — 6T, for odd n GD

(iv) r is odd and 6 = - )
In this case, the semi- mﬁmte shlfted PM sequence is decomposed as
Soum-i = (ST S083" 51857 S2) (S5 53557 84557 S5} (5785 . .. (52)

with m = (n — 1)/2 > 0 and Lg = 3. The significant difference from case (jii} is that, in
place of (50), X becomes

X = MM MsMP! My MZ" M5 MI Mo M M MP™ (53)

which suggests

N[H

At for even m
X = - {54)
A for odd m.

It follows straightforwardly from a similar analysis that

Lt Din|R] 285" for even m
ﬁ{ﬂ} | = 6ino, (55)
60=_5 _Zﬂ ]-n [Rl fOr Odd
6lnaw, "

Some other examples, for which variant maximum exponents of power for the power-law
growth of the wavefunction are obtained due to different initial phases, are shown in table 1.
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4. Conclusions

Binary QP sequences made by (1) with @ = @, and non-vanishing initial phase 6, or,
. more visually, the binary QP sequences generated by the standard projection method [6] -
associated with tang = @, and a shift in the position of the strip by 6y [7], have been
shown to preserve self-similarity if and oaly if & can be cast into the form (3). Different
types of self-similarity have been found to exist depending on the value of 6y. Despite the
difference in self-similarity, these QP sequences are locally isomorphic. As a consequence,
one may believe that they will not produce any difference in physical characteristics. This,
in fact, turns out to be incorrect, as has been found by studying the scaling behaviour of
the wavefunction at £ = 0 in an off-diagonal model. Our analytical results have shown
that, depending on the value of 8, there exist various maximum exponents of power for the
power-law scaling behaviour of the wavefunction. The variety of the power-law exponent
for the wavefunction suggests that different types of system-size dependence of the resistance
may exist. )

The variety of the self-similar QP structures in a local isomorphism class and the variety
of physical characteristics caused does not seem to be specific only to the generalized
Fibonacci QP lattices. A similar feature can also be expected in more general 1D, 2D and 3D
quasicrystals.
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Appendix.

In this appendix, we describe how to decompose an infinite shifted PM sequence into an
S-sequence, consisting of ordinary PM sequences of finite order, S, defined by the inflation
scheme (17).

Let us first concentrate on the right semi-infinite sequence starting from & = 1 up to
positive infinity in (1). When 8, = 0, the semi-infinite sequence is simply the limit of §; as
! — +0o0 made by the inflation scheme (17). When 6; is small but finite, the new sequence
will be identical to the ordinary PM sequence Se, Only up to some finite £. If the initial part
of the new sequence matches Sf’_;_[ S =0, n" =0, 1,...,n—1) for its entire length, then
it is said that the corresponding 8 generates §7;§;. It is not difficult to note that, whenever
S,"_;_[S, is generated, S{’_:IS[ and S;‘_f_l, with n” < n’, are also generated. As a result, for
each value of 6y there must be a maximum value /;, of [ and a maximum value ng of #/
for-which §",,5;, is generated but S,'::‘_‘i_"'l", with 1 a positive integer, is not generated. We
ghall say that_Si’;“;_,S;m is guaranteed by the initial phase. In other words, the guaranteed
sequence is the longest generated sequence. For any 8y, that is located inside the interval

[—1/A, w,/A), with A =1 4 w,, the guaranteed finite sequence can be worked out as

spSy  for PP R S
ot o (o @b
_ m+l\<‘90<_ nlsm

{irs
fi
578 for =~ A

m=0,1,....,.n—1
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and
e YA —e Y2
Szj+] for -—-( (.!Jn) $90<—£“M<0 J)l
. ( @ )Zj+l$ A ( w)2j+! (AZ)
Spje0 for O < -—_—"A-—-—l £l < ———Z\.—-— jiz1
- (=) gy (—w,)2H1E
SyipaSape1 for O < —~"—A—T—— L6 < —%
m=1,....,.n—1 j=z1 (A3)
(—wa)E (=) &1
87418y for ~-——-'1A-—r"—$90_< ——"—A—m—-<0
m=1,...,n—1 jzl , (A4)

where §,, = 1—maw,. For the purpose of sequence decomposition, it is not always convenient
to associate the longest generated sequence (the guaranteed sequence) S{;’“_E‘ISIM to 6. In
fact, the idea of the sequence decomposition is that, after selecting a generated sequence,
say Sﬁ‘_HS;[, for example, as an element in the S-sequence for certain &, one must treat
k = n( P4 + P, + 1 as the new starting point k" =-1, so that one can get a new Initial
phase and deiermine the next element in the S-sequence. Here F; is the number of digits

in the !th-order PM sequence §;, defined by the following recursion relation:
Py =nP+ P (=21 with =P =1. (AS5)

To be more specific, after selecting S;,S;, as the first element in the S-sequence, the
remainder of the shifted PM sequence should he regarded as a new shifted PM sequence with
the new initial phase 6 given by '

P
6, =6 = F (90 + Mi_"‘ﬁ) (A6)
where ‘
x — LxJ for x—|x] < /A
F(x)—lx_{_x_[_l for x— x| > w,/A a7

with {x] denoting the integer part of x. Note that by using the function F(x}, ; is once
again located inside the interval [—1/A, @,/A). In order to ensure that the element of
the type S,“_;_] Sy appears in increasing order of [ in the S-sequence (which will be of central
importance in discussing the self-similarity of the infinite sequence), the element in the
§-sequence should be chosen carefully to make the new initial phase 6, satisfy |8} < |6|.
For ny, # 0, selecting the guaranteed sequence as an element in the S-sequence does leave
us with a smaller |6;]. On the other hand, for ny, = 0 and I, 2 3, as in (A2), one must
choose a shorter generated sequence Sj,... instead of selecting the guaranteed sequence Sy,
as an element in the S-sequence in order to guarantee |85 < [6p]. With this rule in mind,
the element in the S-sequence is determined according to the following rules:

—, )2+ N2
S3i42S2j+1  for Q<'_M‘<‘9°<_( wn)A En
m=0,1,...,n—1 j=0 (A%)
— V2 o 2
Siﬂ.fHSZj for — F—% <6y < —_( w"?& EM-H <0

m=01,....,n—1 Jj =20 (A9)
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and the new initial phase can be worked out as

—e Y2 ' ey N2 EPNRYY;
35:50+ﬂ’£._..‘5_m for —%‘S%<f%ﬁ<0
—_ 2i+1 _ 2741 _ 2541
by = 6y +%§'—ﬂ- for ()<_(_w'i)_z_§m_+lg_90<_( wﬂi En
m=0,1,....n—1 i=0. ‘ (Al1Q)
It is easy 1o see that
o< < —%— for - (—%’5 < < _ o) Mt "L f’e'"“ <0
=) 2j+2 : (—w )L‘"Hzg- (- )2j+!
"_BA)_""'" <8 <0 for 0<—-”—A-"-"-"'—1$90<__”A___§ﬂ
m=0,1,...,n—1 j=z0 - {A1D)

so the new initial phase 8] is less than |6| in absolute value and will guarantee an element
of the type S}'_L,Sg in the S-sequence with increasing order of ! from the left to the right.

We are now ready to show how to decompose a shifted PM sequence with any 8 located
inside the interval (—1/A € 8y < w,/A) into an S-sequence. If €y = 0, then the compiete
PM sequence follows, so that the decomposition ends up with the sole member S, in the
S-sequence. If 6y # O, on the other hand, we may register S, 5, as the first element in
the S-sequence provided that 8 lies between —(—w, )&, /A and —(—wn)1Ey 41/ A. At the
same time, we treat & = n; Py, 1+ P, +1 as the new starting point &' = 1 and the new initial
phase ) is determined by (A10). If 65 = 0, then S, is registered as the second and the
last element in the S-sequence, and the decomposition is completed. If 8] # 0, on the other
hand, we have to determine the second element from the value of 8; by (A8) and (A%). Then
the new initial phase & is calculated by (A10). From 6], we can obtain the third element in
the S-sequence. This process is repeated infinitely until we find a vanishing initial phase. At
each ste? the element of the type S} » 8y 1s determmed by (A8) and (A9), and the new initial
phase 90'”+] is found from the previous one 90 through (A10). The procedure uniquely
determines the decomposition of any shifted PM sequence into an S-sequence At each step
of the decomposition, the relation between the new initial phase 9 * and the previous one
9("’} guarantees that the elements of the type SI "1 S; appear in increasing order of / from the
left to the right, with the increment of / between any two adjacent elements being always
odd. Furthermore, from (All) we know that S, never follows ,;]Sg of an odd index !.
In fact, if these properties are to be required of the S-sequence, the decomposition will be
unique.

As for the left semi-infinite sequence starting from % = 0 down to minus infinity made
by (1}, with some decomposition rules similar to (A9) and (A10), one can also decompose
it into a succession of finite PM sequences. However, for the sequence extending to the
left, we choose to ensure that the element of the type S,"_;_J S; appears in the §-sequence in
increasing order of { from the right to the left, rather than from the left to the right. This
makes it convenient for us to observe the self-similarity of the shifted PM sequence with 6,
of the form (3), as was discussed in section 2 and shown in table 1.
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